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Outline

1 Why lossy compression of permutations
I Storage of ranking data
I Analysis of approximate sorting algorithms

2 Rate distortion problem in permutation space
I Worst-case and average-case
I Distortion measures of interest

3 Results
I Relationship among distortion measures
I Equivalence among source codes
I Lossy compression schemes
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Storage of ranking data

Permutation σ = [3, 4, 1, 2, 5]

Ranking as a permutation σ

A list of items v1, v2, . . . , vn such that

vσ−1(1) � vσ−1(2) � . . . � vσ−1(n)

σ: the ranking of these list of items
I σ(i): rank of item vi
I σ−1(r): the index of the item with rank r

Recommendation systems

Storing preferences of all users
Rough knowledge may be sufficient

lossy compression!
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Analysis of approximate sorting algorithms

Given a certain distortion measure,

Lossy compression:

need R bits to describe σ up to distortion D

Approximate sorting:

Assume: all elements are distinct

Comparison-based sorting: search for the “true” ordering
(permutation)

A comparison provides at most 1 bit of information

Need at least R comparisons to find a permutation with distortion D

An information-theoretic lower bound on query complexity
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Rate-distortion theory of a permutation space

First formulated in [W., Mazumdar & Wornell, ISIT’13]

Permutation space

Sn: the set of n! permutations
d: distance measure

(n, Dn) source code Cn

Cn ⊂ Sn
Encoder: fn : Sn → Cn

Worst-case distortion:

max
σ

d(σ, fn(σ)) ≤ Dn.

Average-case distortion:

E [d(σ, fn(σ))] ≤ Dn.

Assume uniform
distribution over Sn
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Rate-distortion theory of a permutation space

Rate-distortion function
Let A(n, Dn) be the minimum size of the (n, Dn) source codes with
distortion Dn. The minimal rate for distortion Dn is

R(Dn) ,
log A(n, Dn)

log n!
,

Under average-case distortion: R̄(Dn)
Under worst-case distortion: R̂(Dn)
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Four distance measures of interest
Among the many possibilities. . .

1 `∞ distance of permutation vectors (Chebyshev distance)
I Maximum of rank deviations

2 `1 distance of permutation vectors (Spearman’s footrule)
I Sum of rank deviations

3 Kendall tau distance of permutation vectors
I Number of “operations” to eliminate rank deviations
I [W., Mazumdar & Wornell, ISIT’13]

4 `1 distance of inversion vectors (inversion-`1 distance)
I Inversion vector: keeps track of “out-of-order” elements in the

permutation
I [W., Mazumdar & Wornell, ISIT’13]
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Results in this talk

After scaling, these distortion measures lower and upper bound
each other

I Sometimes in a probabilistic sense

Lead to
I equivalence between source codes
I similar rate-distortion functions

Lossy compression schemes
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Distance measure of permutations
`1 and `∞ distances

Given two permutations σ1 and σ2,

d`∞ (σ1, σ2) , ‖σ1 − σ2‖∞

= max
1≤i≤n

|σ1(i)− σ2(i)|

d`1 (σ1, σ2) , ‖σ1 − σ2‖1

=
n

∑
i=1
|σ1(i)− σ2(i)|
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Distance measure of permutations
Kendall tau distance

The Kendall tau distance dτ(σ1, σ2):
the minimum number of swaps of adjacent elements required to
change σ1 into σ2.

Properties

upper bounded by (n
2)

dτ (σ, e) = number of swaps in bubble sort

10 / 19



Distance measure of permutations
`1 distance of inversion vectors

Inversion
An inversion in a permutation σ: a pair (σ(i), σ(j)) such that
i < j and σ(i) > σ(j).

I Inversions in σ1 = [1, 5, 4, 2, 3]: (5, 4), (5, 2), (5, 3), (4, 2), (4, 3)
I Inversions in σ2 = [3, 4, 5, 1, 2]: (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)

Inversion vector xσ ∈ [0 : 1]× [0 : 2]× · · · × [0 : n− 1]

xσ(i) = the number of inversions in σ in which i + 1 is the first element
i = 1, 2, . . . , n− 1.

Examples σ1 = [1, 5, 4, 2, 3]⇒ xσ1 = [0, 0, 2, 3]
σ2 = [3, 4, 5, 1, 2]⇒ xσ2 = [0, 2, 2, 2]

dx,`1 (σ1, σ2) = d`1 ([0, 0, 2, 3], [0, 2, 2, 2]) = 3

Inversion vector: a common measure of sortedness
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Relationship between distortion measures

For any two permutations σ1 and σ2 in Sn,

n · d`∞ (σ1, σ2) ≥ d`1 (σ1, σ2)
(a)
≥ dτ

(
σ−1

1 , σ−1
2

)
≥ dx,`1

(
σ−1

1 , σ−1
2

)

n · d`∞ (σ1, σ2)
w.h.p.
<
∝ d`1 (σ1, σ2)

(a)
<
∝ dτ

(
σ−1

1 , σ−1
2

) w.h.p.
<
∝ dx,`1

(
σ−1

1 , σ−1
2

)

(a): [Diaconis 1977]

<
∝ : less than, after the right hand side is scaled by some constant

w.h.p.: when σ1 is drawn uniformly from Sn
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Kendall tau distance and `1 distance of inversion vectors

In general 1
n− 1

dτ (σ1, σ2) ≤ dx,`1 (xσ1 , xσ2) ≤ dτ(σ1, σ2).

With high probability

For any c < 1/2, when σ1 is uniformly drawn from Sn,

c · dτ (σ1, σ2) ≤ dx,`1 (σ1, σ2) w.h.p.

Probabilistic argument:

E [Xτ] ≈
n2

4
Var [Xτ] ≈

n3

36

E [Xx,`1 ] >
n2

8
Var [Xx,`1 ] <

n3

3

For c < 1/2, applying Chebyshev’s inequality,

P [c · Xτ > Xx,`1 ] = O (1/n) .
13 / 19



Implication

For distortion measures d and d′, if

d′(σ1, σ2) <
∝ d(σ1, σ2),

then under both average-case and worst-case distortion,

a (n, Dn) code for X (Sn, d) ⇒ a (n, c · Dn) code for X
(
Sn, d′

)
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Equivalence of lossy source codes

d`∞ d`1 dτ dx,`1

Average-case only

Average-case
and worst-case

(
n, Dn

n

)
(n, Dn) (n, Dn)

(n, nc1Dn)
(

n, Dn
2

)
(n, c2Dn)
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Rate distortion functions

[W., Mazumdar & Wornell, ISIT’13]: worst-case dτ and dx,`1
More analysis

I more distortion measures
I worst-case and average-case RDFs identical

0 1
0

1

D =





Θ
(

n1+δ
)

for dx,`1
, dτ , d`1

Θ
(

nδ
)

for d`∞

D =

{
O (n) for dx,`1

, dτ , d`1

O (1) for d`∞

δ

R̄(Dn) = R̂(Dn)
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Lossy compression schemes

`1 and `∞ distance of permutation vectors
I quantize by sorting subsequences that corresponding to a range of

ranking
I Time complexity: O (n log n)

Kendall tau distance
I quantization by sorting subsequences
I Time complexity: O (n log n)

σ1, σ2, . . . , σm σm+1, . . . , σ2m · · · σ(k−1)m+1, . . . , σkm σkm+1, . . . , σn

sort sortsort sort sort keep

`1 distance of inversion vectors
I component-wise scalar quantization
I Time complexity: O (n)
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Discussions

A lossy compression scheme for one distortion measure effectively
preserves distortion under other measures considered in this talk

RDF holds for any error criterion between average-case distortion
and worst-case distortion

I Example:
lim

n→∞
P [d( fn(σ), σ) > Dn] = 0
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Future directions

More distortion measures: correspond to top-k selection

More source models: non-uniform distrition over Sn
I Mallows model
I . . .
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