Lossy Compression of Permutations

Da Wang **EECS**, MIT

Arya Mazumdar ECE, Univ. Minnesota

Gregory W. Wornell EECS, MIT

ISIT 2014, Honolulu, HI

June 30, 2014

Outline

1 Why lossy compression of permutations

- \triangleright Storage of ranking data
- Analysis of approximate sorting algorithms
- Rate distortion problem in permutation space
	- Worst-case and average-case
	- \triangleright Distortion measures of interest
- **Results**
	- \triangleright Relationship among distortion measures
	- \blacktriangleright Equivalence among source codes
	- Lossy compression schemes

Storage of ranking data

Permutation $\sigma = [3, 4, 1, 2, 5]$

Ranking as a permutation *σ*

A list of items v_1, v_2, \ldots, v_n such that

$$
v_{\sigma^{-1}(1)} \succ v_{\sigma^{-1}(2)} \succ \ldots \succ v_{\sigma^{-1}(n)}
$$

- \blacksquare *σ*: the ranking of these list of items
	- \triangleright *σ*(*i*): rank of item *v_i*
	- \blacktriangleright $\sigma^{-1}(r)$: the index of the item with rank *r*

Recommendation systems

- Storing preferences of all users
- Rough knowledge may be sufficient

Storage of ranking data

Permutation $\sigma = [3, 4, 1, 2, 5]$

Ranking as a permutation *σ*

A list of items v_1, v_2, \ldots, v_n such that

$$
v_{\sigma^{-1}(1)} \succ v_{\sigma^{-1}(2)} \succ \ldots \succ v_{\sigma^{-1}(n)}
$$

- \blacksquare *σ*: the ranking of these list of items
	- \triangleright *σ*(*i*): rank of item *v_i*
	- \blacktriangleright $\sigma^{-1}(r)$: the index of the item with rank *r*

Recommendation systems

- Storing preferences of all users
- Rough knowledge may be sufficient

lossy compression!

Analysis of approximate sorting algorithms

Given a certain distortion measure,

Lossy compression:

need *R* bits to describe *σ* up to distortion *D*

Approximate sorting:

- **Assume: all elements are distinct**
- Comparison-based sorting: search for the "true" ordering (permutation)
- \blacksquare A comparison provides at most 1 bit of information
- Need at least *R* comparisons to find a permutation with distortion *D*

Analysis of approximate sorting algorithms

Given a certain distortion measure,

Lossy compression:

need *R* bits to describe *σ* up to distortion *D*

Approximate sorting:

- **Assume: all elements are distinct**
- Comparison-based sorting: search for the "true" ordering (permutation)
- \blacksquare A comparison provides at most 1 bit of information
- Need at least *R* comparisons to find a permutation with distortion *D*

An information-theoretic lower bound on query complexity

Rate-distortion theory of a permutation space

■ First formulated in [W., Mazumdar & Wornell, ISIT[']13]

Permutation space

 S_n : the set of *n*! permutations ■ *d*: distance measure

(n, D_n) source code \mathcal{C}_n

- C*n* ⊂ S*n*
- Encoder: $f_n: \mathcal{S}_n \to \mathcal{C}_n$

Worst-case distortion:

 $\max_{\sigma} d(\sigma, f_n(\sigma)) \leq D_n.$

Average-case distortion:

 $\mathbb{E} \left[d(\sigma, f_n(\sigma)) \right] \leq D_n.$

Assume uniform distribution over S*ⁿ*

Rate-distortion function

Let $A(n, D_n)$ be the minimum size of the (n, D_n) source codes with distortion D_n . The minimal rate for distortion D_n is

$$
R(D_n) \triangleq \frac{\log A(n, D_n)}{\log n!},
$$

■ Under average-case distortion: $\bar{R}(D_n)$ ■ Under worst-case distortion: $\hat{R}(D_n)$

Four distance measures of interest Among the many possibilities. . .

 \Box ℓ_{∞} distance of permutation vectors (Chebyshev distance) \blacktriangleright Maximum of rank deviations

- 2 ℓ_1 distance of permutation vectors (Spearman's footrule)
	- \triangleright Sum of rank deviations
- 3 Kendall tau distance of permutation vectors
	- \triangleright Number of "operations" to eliminate rank deviations
	- ► **W.**, Mazumdar & Wornell, ISIT[']13]
- 4 ℓ_1 distance of inversion vectors (inversion- ℓ_1 distance)
	- Inversion vector: keeps track of "out-of-order" elements in the permutation
	- **IM.**, Mazumdar & Wornell, ISIT'13]
- After scaling, these distortion measures lower and upper bound each other
	- \triangleright Sometimes in a probabilistic sense
- Lead to
	- \blacktriangleright equivalence between source codes
	- \blacktriangleright similar rate-distortion functions
- **Lossy compression schemes**

Distance measure of permutations ℓ_1 and ℓ_{∞} distances

Given two permutations σ_1 and σ_2 ,

$$
d_{\ell_{\infty}}(\sigma_1, \sigma_2) \triangleq ||\sigma_1 - \sigma_2||_{\infty}
$$

=
$$
\max_{1 \le i \le n} |\sigma_1(i) - \sigma_2(i)|
$$

$$
d_{\ell_1}(\sigma_1, \sigma_2) \triangleq ||\sigma_1 - \sigma_2||_1
$$

=
$$
\sum_{i=1}^n |\sigma_1(i) - \sigma_2(i)|
$$

Distance measure of permutations Kendall tau distance

The *Kendall tau distance* $d_{\tau}(\sigma_1, \sigma_2)$: the minimum number of swaps of adjacent elements required to change σ_1 into σ_2 .

Properties

■ upper bounded by
$$
\binom{n}{2}
$$

■ d_{τ} (σ , e) = number of swaps in bubble sort

Distance measure of permutations

 ℓ_1 distance of inversion vectors

Inversion

An *inversion* in a permutation σ : a pair $(\sigma(i), \sigma(j))$ such that $i < j$ and $\sigma(i) > \sigma(j)$.

- Inversions in $\sigma_1 = [1, 5, 4, 2, 3]$: (5, 4), (5, 2), (5, 3), (4, 2), (4, 3)
- Inversions in $\sigma_2 = [3, 4, 5, 1, 2]$: (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)

Inversion vector $\mathbf{x}_{\sigma} \in [0:1] \times [0:2] \times \cdots \times [0: n-1]$

 $\mathbf{x}_{\sigma}(i)$ = the number of inversions in σ in which $i + 1$ is the first element $i = 1, 2, \ldots, n - 1$.

Examples
$$
\sigma_1 = [1, 5, 4, 2, 3] \Rightarrow \mathbf{x}_{\sigma_1} = [0, 0, 2, 3]
$$

\n
$$
\sigma_2 = [3, 4, 5, 1, 2] \Rightarrow \mathbf{x}_{\sigma_2} = [0, 2, 2, 2]
$$
\n
$$
d_{\mathbf{x}, \ell_1} (\sigma_1, \sigma_2) = d_{\ell_1} ([0, 0, 2, 3], [0, 2, 2, 2]) = 3
$$

Inversion vector: a common measure of sortedness

Relationship between distortion measures

For any two permutations σ_1 and σ_2 in S_n ,

$$
n \cdot d_{\ell_{\infty}}(\sigma_1, \sigma_2) \geq d_{\ell_1}(\sigma_1, \sigma_2) \stackrel{(a)}{\geq} d_{\tau}(\sigma_1^{-1}, \sigma_2^{-1}) \geq d_{\mathbf{x}, \ell_1}(\sigma_1^{-1}, \sigma_2^{-1})
$$

$$
n \cdot d_{\ell_{\infty}}(\sigma_1, \sigma_2) \stackrel{w.h.p.}{\leq} d_{\ell_1}(\sigma_1, \sigma_2) \stackrel{(a)}{\leq} d_{\tau}(\sigma_1^{-1}, \sigma_2^{-1}) \stackrel{w.h.p.}{\leq} d_{\mathbf{x}, \ell_1}(\sigma_1^{-1}, \sigma_2^{-1})
$$

• (a): [Diaconis 1977]

 \blacksquare \leq : less than, after the right hand side is scaled by some constant w.h.p.: when σ_1 is drawn uniformly from S_n

Kendall tau distance and ℓ_1 distance of inversion vectors

In general
$$
\frac{1}{n-1}d_{\tau}(\sigma_1,\sigma_2)\leq d_{\mathbf{x},\ell_1}(\mathbf{x}_{\sigma_1},\mathbf{x}_{\sigma_2})\leq d_{\tau}(\sigma_1,\sigma_2).
$$

With high probability

For any $c < 1/2$, when σ_1 is uniformly drawn from S_n ,

$$
c \cdot d_{\tau}(\sigma_1, \sigma_2) \leq d_{\mathbf{x}, \ell_1}(\sigma_1, \sigma_2) \quad w.h.p.
$$

Probabilistic argument:

$$
\mathbb{E}\left[X_{\tau}\right] \approx \frac{n^2}{4} \qquad \qquad \text{Var}\left[X_{\tau}\right] \approx \frac{n^3}{36}
$$
\n
$$
\mathbb{E}\left[X_{\mathbf{x},\ell_1}\right] > \frac{n^2}{8} \qquad \qquad \text{Var}\left[X_{\mathbf{x},\ell_1}\right] < \frac{n^3}{3}
$$

For $c < 1/2$, applying Chebyshev's inequality,

$$
\mathbb{P}\left[c \cdot X_{\tau} > X_{\mathbf{x},\ell_1}\right] = O\left(1/n\right).
$$

For distortion measures *d* and *d* 0 , if

$$
d'(\sigma_1,\sigma_2) \leq d(\sigma_1,\sigma_2),
$$

then under both average-case and worst-case distortion,

a (n, D_n) code for $\mathcal{X}(S_n, d) \Rightarrow$ a $(n, c \cdot D_n)$ code for $\mathcal{X}(S_n, d')$

For distortion measures *d* and *d* 0 , if

$$
d'(\sigma_1,\sigma_2) \underset{\propto}{\overset{w.h.p.}{\leq}} d(\sigma_1,\sigma_2),
$$

then under average-case distortion,

a
$$
(n, D_n)
$$
 code for $\mathcal{X}(S_n, d) \Rightarrow$ a $(n, c \cdot D_n)$ code for $\mathcal{X}(S_n, d')$

Equivalence of lossy source codes

Rate distortion functions

- [W., Mazumdar & Wornell, ISIT'13]: worst-case d_{τ} and $d_{\mathbf{x},\ell_1}$ **More** analysis
	- \blacktriangleright more distortion measures
	- \triangleright worst-case and average-case RDFs identical

Lossy compression schemes

- $\blacksquare \ell_1$ and ℓ_{∞} distance of permutation vectors
	- \triangleright quantize by sorting subsequences that corresponding to a range of ranking
	- \blacktriangleright Time complexity: $O(n \log n)$
- Kendall tau distance
	- \blacktriangleright quantization by sorting subsequences
	- \blacktriangleright Time complexity: $O(n \log n)$

- $\blacksquare \ell_1$ distance of inversion vectors
	- \triangleright component-wise scalar quantization
	- \blacktriangleright Time complexity: $O(n)$
- A lossy compression scheme for one distortion measure effectively preserves distortion under other measures considered in this talk
- **RDF** holds for any error criterion between average-case distortion and worst-case distortion
	- \blacktriangleright Example:

$$
\lim_{n\to\infty}\mathbb{P}\left[d(f_n(\sigma),\sigma)>D_n\right]=0
$$

■ More distortion measures: correspond to top- k selection

More source models: non-uniform distrition over S_n

 \blacktriangleright Mallows model

 \blacktriangleright ...