Lossy Compression of Permutations

Da Wang

EECS, MIT

Arya Mazumdar

ECE, Univ. Minnesota

Gregory W. Wornell

EECS, MIT

ISIT 2014, Honolulu, HI

June 30, 2014

Outline

1 Why lossy compression of permutations

- Storage of ranking data
- Analysis of approximate sorting algorithms
- 2 Rate distortion problem in permutation space
 - Worst-case and average-case
 - Distortion measures of interest
- 3 Results
 - Relationship among distortion measures
 - Equivalence among source codes
 - Lossy compression schemes

Storage of ranking data

Permutation *σ* = [3, 4, 1, 2, 5]

Ranking as a permutation σ

• A list of items v_1, v_2, \ldots, v_n such that

$$v_{\sigma^{-1}(1)} \succ v_{\sigma^{-1}(2)} \succ \ldots \succ v_{\sigma^{-1}(n)}$$

- σ : the ranking of these list of items
 - $\sigma(i)$: rank of item v_i
 - $\sigma^{-1}(r)$: the index of the item with rank *r*

Recommendation systems

- Storing preferences of all users
- Rough knowledge may be sufficient

Storage of ranking data

Permutation *σ* = [3, 4, 1, 2, 5]

Ranking as a permutation σ

• A list of items v_1, v_2, \ldots, v_n such that

$$v_{\sigma^{-1}(1)} \succ v_{\sigma^{-1}(2)} \succ \ldots \succ v_{\sigma^{-1}(n)}$$

- σ : the ranking of these list of items
 - $\sigma(i)$: rank of item v_i
 - $\sigma^{-1}(r)$: the index of the item with rank *r*

Recommendation systems

- Storing preferences of all users
- Rough knowledge may be sufficient

lossy compression!

Analysis of approximate sorting algorithms

Given a certain distortion measure,

Lossy compression:

• need *R* bits to describe σ up to distortion *D*

Approximate sorting:

- Assume: all elements are distinct
- Comparison-based sorting: search for the "true" ordering (permutation)
- A comparison provides at most 1 bit of information
- Need at least *R* comparisons to find a permutation with distortion *D*

Analysis of approximate sorting algorithms

Given a certain distortion measure,

Lossy compression:

• need *R* bits to describe σ up to distortion *D*

Approximate sorting:

- Assume: all elements are distinct
- Comparison-based sorting: search for the "true" ordering (permutation)
- A comparison provides at most 1 bit of information
- Need at least *R* comparisons to find a permutation with distortion *D*

An information-theoretic lower bound on query complexity

Rate-distortion theory of a permutation space

First formulated in [W., Mazumdar & Wornell, ISIT'13]

Permutation space

- *S_n*: the set of *n*! permutations *d*: distance measure
- (n, D_n) source code C_n
- $\mathcal{C}_n \subset \mathcal{S}_n$
- Encoder: $f_n : S_n \to C_n$

Worst-case distortion:

 $\max_{\sigma} d(\sigma, f_n(\sigma)) \leq D_n.$

Average-case distortion:

 $\mathbb{E}\left[d(\sigma,f_n(\sigma))\right] \leq D_n.$

Assume uniform distribution over S_n

Rate-distortion function

Let $A(n, D_n)$ be the minimum size of the (n, D_n) source codes with distortion D_n . The minimal rate for distortion D_n is

$$R(D_n) \triangleq \frac{\log A(n, D_n)}{\log n!},$$

Under average-case distortion: R
 (D_n)

 Under worst-case distortion: R
 (D_n)

Four distance measures of interest Among the many possibilities...

1 ℓ_{∞} distance of permutation vectors (Chebyshev distance)

- Maximum of rank deviations
- **2** ℓ_1 distance of permutation vectors (Spearman's footrule)
 - Sum of rank deviations
- 8 Kendall tau distance of permutation vectors
 - Number of "operations" to eliminate rank deviations
 - [W., Mazumdar & Wornell, ISIT'13]
- 4 ℓ_1 distance of inversion vectors (inversion- ℓ_1 distance)
 - Inversion vector: keeps track of "out-of-order" elements in the permutation
 - [W., Mazumdar & Wornell, ISIT'13]

- After scaling, these distortion measures lower and upper bound each other
 - Sometimes in a probabilistic sense
- Lead to
 - equivalence between source codes
 - similar rate-distortion functions
- Lossy compression schemes

Distance measure of permutations ℓ_1 and ℓ_∞ distances

Given two permutations σ_1 and σ_2 ,

$$d_{\ell_{\infty}}(\sigma_{1},\sigma_{2}) \triangleq \|\sigma_{1} - \sigma_{2}\|_{\infty}$$
$$= \max_{1 \le i \le n} |\sigma_{1}(i) - \sigma_{2}(i)|$$

$$d_{\ell_1}(\sigma_1, \sigma_2) \triangleq \|\sigma_1 - \sigma_2\|_1$$
$$= \sum_{i=1}^n |\sigma_1(i) - \sigma_2(i)|$$

Distance measure of permutations Kendall tau distance

The *Kendall tau distance* $d_{\tau}(\sigma_1, \sigma_2)$: the minimum number of swaps of adjacent elements required to change σ_1 into σ_2 .

Properties

Distance measure of permutations

 ℓ_1 distance of inversion vectors

Inversion

An *inversion* in a permutation σ : a pair $(\sigma(i), \sigma(j))$ such that i < j and $\sigma(i) > \sigma(j)$.

- Inversions in $\sigma_1 = [1, 5, 4, 2, 3]$: (5, 4), (5, 2), (5, 3), (4, 2), (4, 3)
- Inversions in $\sigma_2 = [3, 4, 5, 1, 2]: (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)$

Inversion vector $\mathbf{x}_{\sigma} \in [0:1] \times [0:2] \times \cdots \times [0:n-1]$

 $\mathbf{x}_{\sigma}(i) =$ the number of inversions in σ in which i + 1 is the first element i = 1, 2, ..., n - 1.

Examples
$$\sigma_1 = [1, 5, 4, 2, 3] \Rightarrow \mathbf{x}_{\sigma_1} = [0, 0, 2, 3]$$

 $\sigma_2 = [3, 4, 5, 1, 2] \Rightarrow \mathbf{x}_{\sigma_2} = [0, 2, 2, 2]$
 $d_{\mathbf{x}, \ell_1}(\sigma_1, \sigma_2) = d_{\ell_1}([0, 0, 2, 3], [0, 2, 2, 2]) = 3$

Inversion vector: a common measure of sortedness

Relationship between distortion measures

For any two permutations σ_1 and σ_2 in S_n ,

$$n \cdot d_{\ell_{\infty}}\left(\sigma_{1}, \sigma_{2}\right) \geq d_{\ell_{1}}\left(\sigma_{1}, \sigma_{2}\right) \stackrel{(a)}{\geq} d_{\tau}\left(\sigma_{1}^{-1}, \sigma_{2}^{-1}\right) \geq d_{\mathbf{x}, \ell_{1}}\left(\sigma_{1}^{-1}, \sigma_{2}^{-1}\right)$$

(a): [Diaconis 1977]

\$\leftersizes : less than, after the right hand side is scaled by some constant
 w.h.p.: when σ₁ is drawn uniformly from S_n

Kendall tau distance and ℓ_1 distance of inversion vectors

In general $\frac{1}{n-1}d_{\tau}\left(\sigma_{1},\sigma_{2}\right) \leq d_{\mathbf{x},\ell_{1}}\left(\mathbf{x}_{\sigma_{1}},\mathbf{x}_{\sigma_{2}}\right) \leq d_{\tau}(\sigma_{1},\sigma_{2}).$

With high probability

For any c < 1/2, when σ_1 is uniformly drawn from S_n ,

$$c \cdot d_{\tau}(\sigma_1, \sigma_2) \leq d_{\mathbf{x}, \ell_1}(\sigma_1, \sigma_2) \quad w.h.p.$$

Probabilistic argument:

$$\mathbb{E} [X_{\tau}] \approx \frac{n^2}{4} \qquad \qquad \text{Var} [X_{\tau}] \approx \frac{n^3}{36}$$
$$\mathbb{E} [X_{\mathbf{x},\ell_1}] > \frac{n^2}{8} \qquad \qquad \text{Var} [X_{\mathbf{x},\ell_1}] < \frac{n^3}{3}$$

For c < 1/2, applying Chebyshev's inequality,

$$\mathbb{P}\left[c \cdot X_{\tau} > X_{\mathbf{x},\ell_1}\right] = O\left(1/n\right).$$

For distortion measures d and d', if

$$d'(\sigma_1,\sigma_2) \stackrel{<}{\underset{\scriptstyle \sim}{\scriptstyle \sim}} d(\sigma_1,\sigma_2),$$

then under both average-case and worst-case distortion,

a (n, D_n) code for $\mathcal{X}(\mathcal{S}_n, d) \Rightarrow a(n, c \cdot D_n)$ code for $\mathcal{X}(\mathcal{S}_n, d')$

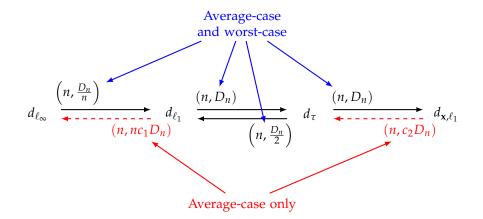
For distortion measures d and d', if

$$d'(\sigma_1,\sigma_2) \overset{w.h.p.}{\underset{\sim}{\overset{w.h.p.}{\overset{\sim}{\sim}}}} d(\sigma_1,\sigma_2),$$

then under average-case distortion,

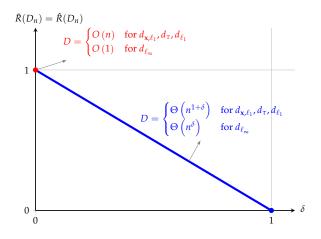
a (n, D_n) code for $\mathcal{X}(\mathcal{S}_n, d) \Rightarrow a(n, c \cdot D_n)$ code for $\mathcal{X}(\mathcal{S}_n, d')$

Equivalence of lossy source codes



Rate distortion functions

- [W., Mazumdar & Wornell, ISIT'13]: worst-case d_τ and d_{x,l1}
 More analysis
 - more distortion measures
 - worst-case and average-case RDFs identical



Lossy compression schemes

- ℓ_1 and ℓ_∞ distance of permutation vectors
 - quantize by sorting subsequences that corresponding to a range of ranking
 - Time complexity: $O(n \log n)$
- Kendall tau distance
 - quantization by sorting subsequences
 - Time complexity: $O(n \log n)$

- ℓ_1 distance of inversion vectors
 - component-wise scalar quantization
 - ▶ Time complexity: *O*(*n*)

- A lossy compression scheme for one distortion measure effectively preserves distortion under other measures considered in this talk
- RDF holds for any error criterion between average-case distortion and worst-case distortion
 - Example:

$$\lim_{n\to\infty}\mathbb{P}\left[d(f_n(\sigma),\sigma)>D_n\right]=0$$

More distortion measures: correspond to top-*k* selection

• More source models: non-uniform distrition over S_n

Mallows model

▶ ...