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Storage of ranking data

Permutation o = [3,4,1,2,5]
Ranking as a permutation ¢
A list of items v1, o, . . ., v, such that
Vp-1(1) > Ug1(2) > +-+ > Upmiy)

o: the ranking of these list of items
o (i): rank of item v;
o~ 1(r): the index of the item with rank r

Recommendation systems

Storing preferences of all users
Rough knowledge may be sufficient



Storage of ranking data

Permutation o = [3,4,1,2,5]
Ranking as a permutation ¢

A list of items v1, o, . . ., v, such that

Ug-1(1) — Ug-1(2) o Uo—1(n)

o: the ranking of these list of items
o (i): rank of item v;
o~ 1(r): the index of the item with rank r

Recommendation systems

Storing preferences of all users
Rough knowledge may be sufficient

lossy compression!
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Analysis of approximate sorting algorithms

Given a certain distortion measure,

Lossy compression:

need R bits to describe ¢ up to distortion D

Approximate sorting:

Assume: all elements are distinct

Comparison-based sorting: search for the “true” ordering
(permutation)

A comparison provides at most 1 bit of information

Need at least R comparisons to find a permutation with distortion D
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Analysis of approximate sorting algorithms

Given a certain distortion measure,

Lossy compression:

need R bits to describe ¢ up to distortion D

Approximate sorting:

Assume: all elements are distinct

Comparison-based sorting: search for the “true” ordering
(permutation)

A comparison provides at most 1 bit of information

Need at least R comparisons to find a permutation with distortion D

An information-theoretic lower bound on query complexity
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Rate-distortion theory of a permutation space
First formulated in [W., Mazumdar & Wornell, ISIT’13]

Permutation space

Syt the set of n! permutations
d: distance measure

(n, D,) source code C,

C, C Sy
Encoder: f,, : S, = Cy

Worst-case distortion: Average-case distortion:

m(gxd((r,fn(a)) < D,. E[d(c, fu(0))] < Dy.

Assume uniform
distribution over S,
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Rate-distortion theory of a permutation space

Rate-distortion function

Let A(n, D,,) be the minimum size of the (n, D,) source codes with
distortion D,,. The minimal rate for distortion D,, is

2 log A(n, Dy)

R(Da) log n!

Under average-case distortion: R(Dj,)
Under worst-case distortion: R(D,,)



Four distance measures of interest
Among the many possibilities. ..

{ distance of permutation vectors (Chebyshev distance)
Maximum of rank deviations

¢, distance of permutation vectors (Spearman’s footrule)
Sum of rank deviations

Kendall tau distance of permutation vectors
Number of “operations” to eliminate rank deviations
[W., Mazumdar & Wornell, ISIT’13]

{1 distance of inversion vectors (inversion-£; distance)

Inversion vector: keeps track of “out-of-order” elements in the
permutation

[W., Mazumdar & Wornell, ISIT’13]
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Results in this talk

After scaling, these distortion measures lower and upper bound
each other

Sometimes in a probabilistic sense

Lead to
equivalence between source codes
similar rate-distortion functions

Lossy compression schemes
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Distance measure of permutations
¢1 and /., distances

Given two permutations ¢ and o>,
dy, (01,02) £ [lon — o2

= max |o1(i) — o2 ()|

dy, (01, 02) £ |joy — o2

—Z]crl — ()|
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Distance measure of permutations
Kendall tau distance

The Kendall tau distance d(oy, 02):
the minimum number of swaps of adjacent elements required to
change o7 into 0.

Properties

upper bounded by (5)
dr (0, e) = number of swaps in bubble sort



Distance measure of permutations
/1 distance of inversion vectors

Inversion

An inversion in a permutation 0 a pair (0 (i), c(j)) such that
i<jando(i) > o(j).

Inversions in o7 = [1,5,4,2,3]: (5,4),(5,2),(5,3),(4,2), (4,3)
Inversions in 0» = [3,4,5,1,2]: (3,1),(3,2), (4,1),(4,2),(5,1),(5,2)
Inversion vector x, € [0:1] X [0:2] X -+- x [0:n —1]

Xy (i) = the number of inversions in ¢ in which i + 1 is the first element

i=12,...,n—1.

Examples ¢y = [1,5,4,2,3] = x,, = [0,0,2,3]
o =[3,4,5,1,2] = x,, = [0,2,2,2]
dx,€1 (0—11 0.2) - dfl ([0/ 0/2/ 3]/ [O/ 2/2/ 2]) — 3

Inversion vector: a common measure of sortedness
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Relationship between distortion measures

For any two permutations ¢; and 03 in S,

(a)
nedi,(on,0) > di (,0) > de (o7 ert) > de, (0705 )

w.h.p. (a) w.h.p.
1 -1 -1 -1
nedi, (@1,0) S dy (o) S de (07 0r") S de (0705

(a): [Diaconis 1977]

< :less than, after the right hand side is scaled by some constant
w.h.p.: when ¢y is drawn uniformly from S,



Kendall tau distance and /; distance of inversion vectors

In general 1

n_ 1dT <Ulr (72) < dx,él (X0'1/ X172> < dT(01102)~

With high probability

For any ¢ < 1/2, when 07 is uniformly drawn from S,
c-de(01,00) <dyy, (01,02)  w.h.p.

Probabilistic argument:

N
@

n n
E [XT] ~ 4 Var [XT] ~ %
n? n’

E [Xy] > ) Var [Xy,] < 3

For c < 1/2, applying Chebyshev’s inequality,

Plc- X > Xyp) =0 (1/n).



Implication

For distortion measures d and d’, if

d(o1,00) < d(or, ),

then under both average-case and worst-case distortion,

a (n,Dy) code for X (S,,d) = a(n,c-D,)code for X (S,,d")



Implication

For distortion measures d and d’, if

w.h.p.
d'(o,02) = d(o, ),

then under average-case distortion,

a (n,Dy) code for X (S,,d) = a(n,c-D,)code for X (S,,d")



Equivalence of lossy source codes

Average-case
and worst-case

AN

Dy
(%) (n,Du) (n,D1)
déoo <+ -———-—-—-—-— - dfl dT <+ ---—-=-=-=-=-=-- dX f1
(n,nc1Dy) <n, %) (n,c2Dy)

Average-case only
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Rate distortion functions

[W., Mazumdar & Wornell, ISIT"13]: worst-case d. and dy 4,
More analysis
more distortion measures

worst-case and average-case RDFs identical

R(Dy) = R(Dy)

D_ O (n) fordyy,, dr,dy,
T lo@) fordy

,_Je n1_+f>") for dy g, d-, dy,
fordy
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Lossy compression schemes

/1 and /o, distance of permutation vectors

quantize by sorting subsequences that corresponding to a range of
ranking

Time complexity: O (nlogn)

Kendall tau distance
quantization by sorting subsequences
Time complexity: O (nlogn)

’ 01,02,...,0m ‘U’m+17-"502m “ O(k—1)m+15---20km | Okm+1s--+,0n

sort sort sort keep

{1 distance of inversion vectors
component-wise scalar quantization
Time complexity: O (1)
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Discussions

A lossy compression scheme for one distortion measure effectively
preserves distortion under other measures considered in this talk

RDF holds for any error criterion between average-case distortion
and worst-case distortion

Example:
lim P [d(fy(0),0) > Dyl =0

n—00
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Future directions

More distortion measures: correspond to top-k selection

More source models: non-uniform distrition over S,
Mallows model
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