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Abstract— While network coding can be an efficient means of
information dissemination in networks, it is highly susceptible
to “pollution attacks,” as the injection of even a single erroneous
packet has the potential to corrupt each and every packet
received by a given destination. Even when suitable error-
control coding is applied, an adversary can, in many interesting
practical situations, overwhelm the error-correcting capability
of the code. To limit the power of potential adversaries, a
broadcast-mode transformation is introduced, in which nodes
are limited to just a single (broadcast) transmission per gen-
eration. Under this broadcast transformation, the multicast
capacity of a network is changed (in general reduced) from the
number of edge-disjoint paths between source and sink to the
number of internally-disjoint paths. In some interesting cases
(in particular, in a class of networks introduced by Jain, Lovász
and Chou), the network capacity is maintained in broadcast
mode. This results in a significant achievable transmission rate
for such networks, even in the presence of adversaries.

I. I NTRODUCTION

Network coding [1] is a promising approach for efficient
information dissemination in packet networks. Network cod-
ing generalizes routing, allowing nodes in the network not
only to switch packets from input ports to output ports, but
also to combine incoming packets in some manner to form
outgoing packets. For example, inlinear network coding,
fixed-length packets are regarded as vectors over a finite field
Fq, and network coding operations are linear with respect
to Fq, i.e., nodes in the network form outgoing packets as
Fq-linear combinations of incoming packets. For the single-
source multicast problem, it is known that linear network
coding suffices to achieve the network capacity [2], [3].

Recently the problem of error correction in network coding
has received significant attention due to the fact that pollution
attacks can be catastrophic. Indeed, the injection of even
a single erroneous packet somewhere in the network has
the potential to corrupt each and every packet received
by a given sink node. This problem was first investigated
from an edge-centric perspective [4], where a number of
packet errors could arise in any of the links in the network.
Alternatively, under a node-centric perspective, it is assumed
that an adversarial node may join the network and transmit
corrupt packets on all its outgoing links, but the other links
in the network remain free of error.

One approach, investigated in [5], [6], for dealing with
the pollution problem is to apply cryptographic techniques to
ensure the validity of received packets, permitting corrupted
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packets to be discarded by each node, and therefore prevent-
ing the contamination of other packets. This approach typi-
cally requires the use of large field and packet sizes, which
leads to computationally expensive operations at the nodes
and possibly to significant transmission delay. These re-
quirements may be acceptable in the large-file-downloading
scenario, but may be incompatible with delay-constrained
applications such as streaming-media distribution.

Another approach (and the one followed in this paper) is to
look for end-to-end coding techniques that require little or no
intelligence at the internal nodes. Jaggiet al. [7] show that,
if C is the network capacity (per transmission-generation)
and z is the min-cut from the adversary to a destination,
then a rate ofC − 2z packets per generation is achievable.
The results of [8] show that, using the subspace approach
introduced in [9], it is possible (in some cases) to achieve a
slightly larger rate, upper-bounded byC− z. The rateC− z
can be achieved using a scheme proposed in [7] if the source
and sink nodes are allowed to share a secret (i.e., they have
common information not available to the adversary).

In all of the end-to-end techniques mentioned above, we
observe that the min-cut from the adversary to a sink node
has a significant impact on the achievable rates. Ifz is
large—for instance, ifz = C—then the adversary can
jam the network with no hope of recovery. It is important,
therefore, to conceive of protocols that induce per-generation
network topologies that can perform well, even in the pres-
ence of adversaries.

The central question of this paper is the following:
What simple changes to a protocol (and hence to the
induced graph topology) might be effective in reduc-
ing the influence of an adversary, while not (greatly)
affecting the rate of reliable communication?

We show that in some important special cases it is in-
deed possible to constrict potential adversaries, without any
sacrifice of network capacity.

In this paper, we introduce the concept of abroadcast
transformation, which essentially constrains potential adver-
saries to sending the same packet on all its outgoing links. In
the case of a single malicious node, this effectively enforces
z = 1. In order for such a transformation to be possible,
we introduce the concept of atrusted nodethat performs the
role of broadcasting traffic. In practice, such a broadcasting
feature could be implemented, e.g., at a trusted network
gateway.

In general, our proposed broadcast transformation can, in
some cases, significantly reduce capacity, unless the net-
work has special connectivity properties. We will show that



the maximum number ofinternally-disjoint pathsbetween
source and sink, rather than edge-disjoint paths, becomes the
key parameter. We specifically examine a class of networks
that have been proposed and extensively analyzed by Jain,
Lovász and Chou (JLC) in [10]. We show that, under fairly
general conditions, no loss in capacity is incurred when
performing broadcast conversion in such JLC networks.

The remainder of this paper is organized as follows. In
Sec. II we review some basic definitions in network coding.
In Sec. III we introduce our adversarial model for commu-
nication over untrusted networks along with some examples.
In Sec. IV we introduce the broadcast transformation and
prove our main result concerning the achievable rates for
JLC networks. In Sec. V we present some simulation results
focused on practical scenarios and in Sec. VI we present our
conclusions.

II. PRELIMINARIES

Let G be a directed multigraph with vertex setV(G) and
edge setE(G). We will assume thatE(G) ⊆ V(G)×V(G)×
Z, where the third component is used to distinguish among
multiple edges between the same nodes. ForA,B ⊆ V(G),
let [A,B] denote the set of edges inG directed from some
vertex inA to some vertex inB. Let indeg(v) andoutdeg(v)
denote the indegree and outdegree, respectively, of a vertex
v. Also, define

mincutG(s, t) , min
s∈A⊆V(G)\{t}

|[A,V(G) \ A]|

mincutG(S, t) , min
S⊆A⊆V(G)\{t}

|[A,V(G) \ A]|.

We will often omit the subscriptG when the graph is clear
from context.

A (single-source) multicast networkN = (G, s, T ) con-
sists of a directed multigraphG with a distinguished source
nodes, which observes a certain message, and a set of sink
nodesT 63 s, where each node inT demands the message
observed ats.

Each link in the network is assumed to transport, free of
errors, a packet of a certain fixed size. A packet in a link
entering a node is said to be an incoming packet to that node,
and similarly a packet in a link leaving a node is said to be
an outgoing packet from that node.

When network coding is used, the source node produces
each of its outgoing packets as an arbitrary function of the
message it observes. Also, each non-source node produces
each of its outgoing packets as an arbitrary function of its
incoming packets. Each sink node then attempts to recover
the source message from its incoming packets. We say that
decoding is successful when correct recovery occurs for all
sink nodes.

The set of all functions applied by all nodes in the network
specifies anetwork code.

Let the packets in the network each consist ofM symbols
from a finite fieldFq and letΩ denote the codebook from
which the source message is selected. Therate of Ω is
defined as

R(Ω) ,
1
M

logq |Ω|.

A rateR is said to beachievablefor a networkN if there
exists a sequence of codesΩi with R(Ωi) ≥ R, along with
corresponding network codes, such that the probability of
unsuccessful decoding becomes arbitrarily small asi → ∞
(here,q andM are allowed to grow withi).

Define

C(N ) , C(G, s, T ) , min
t∈T

mincutG(s, t).

A key result in [1] is that a rateR is achievable for a
multicast networkN if and only if

R ≤ C(N ).

For this reason,C(N ) is usually regarded as thecapacityof
a multicast networkN . As shown in [2], [3], this multicast
capacity is achievable with linear network coding.

III. U NTRUSTEDMULTICAST NETWORKS

In this section we describe an adversarial model for
networks that can be subject to pollution attacks. This model
will be used in the remainder of the paper in the computation
of achievable rates.

Definition 1: An untrusted multicast networkN =
(G, s, T ,U) consists of a multicast network(G, s, T ) to-
gether with a set ofuntrusted nodesU ⊆ V(G) \ {s}. The
nodes inV(G) \ U are calledtrusted nodes.

Our adversarial model for communication over an un-
trusted multicast network is the following. The adversary
chooses a set of adversarial nodesA ⊆ U with |A| ≤ w
prior to the beginning of the session. The setA is unknown
to source and sink nodes, but remains fixed during the whole
session. The adversary controls the nodes inA, which are
allowed to transmit any arbitrary packets on their outgoing
links and also to cooperate with each other. We say that
decoding is successful if each sink nodet ∈ T \ A can
correctly recover the source message.

Let us focus on a specific sink nodet and a specific set of
adversarial nodesA 63 t. In [7], Jaggiet al. analyze a similar
model where the adversary has the capability to obtain the
source message (say, by eavesdropping a sufficient number
of packets) prior to sending its own corrupt packets. Note
that this model is compatible with ours since we impose no
constraint on the eavesdropping capability of the adversary.
In such a scenario, it is shown in [7] that the rate

mincut(s, t)− 2 mincut(A, t)

is achievable.
Results in [8] show that, using subspace codes and a

bounded-distance decoder [9], it is also possible to achieve
a slightly higher rate, namely

RBD(s, t,A) , mincut({s} ∪ A, t)− 2 mincut(A, t).

Thus, for the general case of an untrusted networkN =
(G, s, T ,U) with at mostw adversarial nodes, the rate

RBD(N , w) , min
A⊆U :
|A|≤w

min
t∈T \A

RBD(s, t,A) (1)
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Fig. 1. Untrusted multicast network, withRBD(N , 1) = 0 and
RSS(N , 1) = 2.

is achievable.
As shown in [7], if an additional assumption is made that

the source node can share a (small) secret with each of the
sink nodes, then it is possible to achieve the rate

RSS(N , w) , min
A⊆U :
|A|≤w

min
t∈T \A

RSS(s, t,A), (2)

where

RSS(s, t,A) , mincut(s, t)−mincut(A, t).

We will use (1) as our benchmark to evaluate the robust-
ness of a multicast network in the presence of adversaries,
but (2) may sometimes also be used. Note that, since

mincut({s} ∪ A, t) ≤ mincut(s, t) + mincut(A, t)

we haveRBD(s, t,A) ≤ RSS(s, t,A), so a network that
performs well under the measure (1) will also perform well
under (2).

Note that when there is no adversary, both expressions
reduce to the capacity of the underlying multicast network,
i.e.,

RBD(N , 0) = RSS(N , 0) = C(G, s, T ).

Example 1:LetN denote the untrusted multicast network
of Fig. 1. There is a single sink nodet, and the trusted
nodes are the source nodes and all nodes represented by a
filled circle. By inspection, we find thatmincut({s, a}, t) =
mincut(s, t) = 4, while mincut(a, t) = 2. It is easy to see
that RBD(N , 1) = 0 andRSS(N , 1) = 2.

We now consider a specific class of network topologies
proposed by Jain, Lov́asz and Chou [10] for its advantages
in terms of scalability and robustness to node failures in peer-
to-peer applications. Under the protocol proposed in [10], it
is possible to practically maintain the network capacity even
after nodes join, leave or fail.

Definition 2: A multicast networkN is a JLC(d, k) net-
work if it consists only of a source nodes, or if it is formed
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Fig. 2. JLC network withd = 3 andk = 4.

by adjoining to some JLC(d, k) network a sink nodet and
d edges such that the following properties are satisfied:

(P1) indeg(t) = d;
(P2) each pair of edges enteringt that do not come froms

must come from distinct nodes;
(P3) outdeg(v) ≤ d for all v 6= s;
(P4) outdeg(s) ≤ k.

An untrusted JLC networkis a JLC network where all non-
source nodes are untrusted.

By construction, a JLC network is an acyclic network
where each non-source nodet is an (untrusted) sink node
with exactlyd− |[s, t]| non-source parents. It is easy to see
that mincut(s, t) = d for all t 6= s.

Remark 1:The network in Definition 2 is in fact a
slight variation of the network proposed in [10], obtained
by enforcing property (P2). In [10], edges enteringt are
randomly selected from nodes whose outdegree has not yet
been saturated (i.e., from the pool of potential edges) and
therefore it is possible for two of such selected edges to
come from the same node. The reason for including (P2)
will be clear from Lemma 2 in Section IV. In practice, the
edges enteringt can still be chosen randomly as long as (P2)
is satisfied.

Example 2:An example of a JLC networkN with d = 3
andk = 4 is shown in Fig. 2. The sink nodes were adjoined
in succession from left to right and top to bottom. Suppose
a is an adversarial node. Sincemincut(a, t) = 3 = indeg(t),
we obtain thatRBD(N ) ≤ 0 andRSS(N ) = 0.

From the example above, we observe that the quantity
mincut(a, t) can have a severe impact on the achievable
rate for an untrusted multicast network. Ifmincut(a, t) is
large compared tomincut({s, a}, t), as in the case of a
JLC network, then the adversary can overwhelm the system
with corrupt packets, preventing successful decoding. In the
next section, we explore ways to limit the strength of the
adversary without sacrificing network capacity.
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Fig. 4. JLC network withd = 3 andk = 4 after broadcast transformation.

IV. N ETWORK TRANSFORMATIONS

We begin by illustrating our approach with an exam-
ple. Consider again the network in Fig. 2. We see that
mincut(a, t) = 3 only becausea can inject three distinct
packets, which will end up overwriting all packets received
by t.

Suppose, however, that we constrain each untrusted node
u to send only copies of the same packet. This can be
represented graphically by introducing a new nodeu+,
as described in Fig. 3. Here,u+ is a trusted nodethat
only replicates the packet received. Clearly, we now have
mincut(a, t) = 1 in the network of Fig. 4. However, it is not
at all obvious that enforcing this constraint on every untrusted
node will not severely reduce the network capacity.

While it is clear that, after such a transformation,
mincut(s, t) may be reduced in general, the reduction in
mincut(a, t) may (or may not) compensate for this loss and
yield a higher achievable rate. A smooth tradeoff between
the two quantities may be achieved by considering a general
transformation that limits the outdegree of each untrusted
node to at mostr.

Definition 3: Let N = (G, s, T ,U) be an untrusted mul-
ticast network, whereG = (V, E). For L ⊆ E , let L+ =
{(u+, v, i) : (u, v, i) ∈ L}. The degree-r transformation
of N is an untrusted multicast network̂N = (Ĝ, s, T ,U),
whereĜ is given by

V(Ĝ) = V ∪ {u+ : u ∈ U}

E(Ĝ) = [V \ U ,V] ∪ [U ,V]+ ∪
⋃

u∈U

⋃
1≤i≤r

{(u, u+, i)}.

A degree-1 transformation ofN will be called abroadcast
transformation, denoted byβ(N ).

It is immediate from Definition 3 that ifN̂ is a degree-r
transformation ofN , then for any adversarial setA in N̂
we havemincut(A, t) ≤ r|A|.

In the remainder of the paper, we treat only the case
r = 1. This case is interesting not only because it provides
the maximum constraint onmincut(A, t), but also because
it allows useful graph-theoretic tools to be applied in this
context.

Let λ′G(s, t) denote the number of edge-disjoint paths from
a nodes to a nodet in G and letλG(s, t) denote the number
of internally-disjoint paths froms to t in G. The following
proposition is part of a standard argument used in graph
theory to derive the vertex version of Menger’s Theorem
from the Max-Flow Min-Cut Theorem [11]. We include its
proof for completeness.

Proposition 1: LetN = (G, s, T ,U) be an untrusted mul-
ticast network withU = V(G)\{s}, and letN̂ = (Ĝ, s, T ,U)
be a broadcast transformation ofN . Thenλ′Ĝ(s, t) = λG(s, t)
for all t ∈ T .

Proof: If two paths inG are internally-disjoint, then
they will also be internally- (and therefore edge-) disjoint in
Ĝ. Conversely, if two paths inG are not internally-disjoint,
i.e., they share a vertexv, then they will also share the two
verticesv and v+ and the edge(v, v+) in Ĝ and therefore
will not be edge-disjoint in̂G. Thus, the maximum number of
internally-disjoint paths in̂G must be equal to the maximum
number of edge-disjoint paths inG.

The following lemma characterizes internally-disjoint
paths in a JLC network.

Lemma 2:Let N = (G, s, T ) be a JLC(d, k) network.
ThenλG(s, v) = d for all v ∈ V(G) \ {s}.

Proof: (By induction on the size of a JLC(d, k)
network)

If V(G) = {s}, we have nothing to prove. Assume thatN
is obtained by adjoining a nodet to some JLC(d, k) network
N̄ = (G − t, s, T \ {t}) satisfying λG−t(s, v) = d for all
v ∈ V(G) \ {s, t}. Let X be the set of non-source parents of
t, and recall that|X | = d − |[s, t]|. Let G∗ = G − [s, t]. If
t is disconnected froms in G∗ (i.e., if |X | = 0), then it is
trivial that λG(s, t) = d, so assume|X | ≥ 1.

Suppose thatλG(s, t) < d. ThenλG∗(s, t) < d − |[s, t]|.
By Menger’s theorem, there exists a vertex setA with
|A| = λG∗(s, t) whose deletion makest unreachable froms
in G∗. Since |A| < d − |[s, t]| = |X |, there exists at least



one x ∈ X such thatx 6∈ A. But sincet is reachable from
x, the deletion ofA must also makex unreachable froms
in G∗. By Menger’s theorem,λG∗(s, x) ≤ |A| < d− |[s, t]|,
which impliesλG(s, x) < d and λG−t(s, x) < d. But this
contradicts the assumption, so we must haveλG(s, t) ≥
d. Observing theindeg(t) = d, we haveλG(s, t) = d,
which, together with the induction hypothesis, implies that
λG(s, v) = d for all v ∈ V(G) \ {s}.

Using Proposition 1 and Lemma 2, we can now compute
the achievable rates for a broadcast-constrained JLC network.

Theorem 3:Let N̂ be the broadcast transformation of an
untrusted JLC(d, k) network. For0 ≤ w ≤ d, we have

RBD(N̂ , w) = d− 2w

RSS(N̂ , w) = d− w.
Proof: Let N = (G, s, T ,U) be a JLC network such

thatN̂ = (Ĝ, s, T ,U) = β(N ). Using Lemma 2, Proposition
1 and the Max-Flow Min-Cut theorem [11], we have

mincutĜ(s, t) = λ′Ĝ(s, t) = λG(s, t) = d, ∀t ∈ T .

Observe thatd = mincutĜ(s, t) ≤ mincutĜ({s} ∪A, t) ≤
indeg(t) = d. Moreover,mincutĜ(A, t) ≤ |A| for all A, and
mincutĜ(A, t) = |A| if A is a subset of the set of parents
of t. The result now follows by applying the definitions (1)
and (2).

Theorem 3 shows that the broadcast transformation of a
JLC network does not result in a decrease in multicast capac-
ity. Moreover, the loss in achievable rate due to the presence
of adversaries is limited. Thus, a broadcast transformation
of the network of Example 1 results in a nonzero achievable
rate, even in the presence of an adversary withw = 1.

V. SIMULATION RESULTS

While Theorem 3 provides a strong theoretical result for an
interesting class of networks, not all interesting networks are
so easily characterized. In this section we resort to simulation
to further investigate the reduction of multicast capacity of
certain random networks with the broadcast constraint. In
our simulations, we chooseT = V \ {s} for all multicast
problems. Data points in all graphs are the average of at least
40 trials.

A. Impatient JLC Networks

In an impatient network, nodes transmit their outgoing
packets before receiving all their incoming packets. The
patienceparameterα, 0 < α ≤ 1, is the fraction of incoming
packets that are used to compute the outgoing packets.
Although such networks may have lower capacities then their
patient counterparts, settingα < 1 may be desirable, as the
transmission delay from source to destination can potentially
be reduced.

In order to compute the multicast capacity of an impatient
JLC network, we use the following procedure. Starting from
a network with a single (source) node, we iteratively adjoin
new nodes according to Definition 2. Each time a nodet
is adjoined, the min-cut to this node is computed. Then,
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Fig. 5. Capacity of impatient JLC networks as a function ofk/d.

0

2

4

6

8

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

multicast
capacity

α

JLC Network (|V| = 150, d = 10)

unconstrained

♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦

broadcast mode

×

×
×

× × × × × ×

×

Fig. 6. Capacity of impatient JLC networks as a function ofα.

(1 − α)d of its incoming edges are randomly selected
and “blocked”, i.e., such edges are assigned capacity 0 for
subsequent computations.

Our simulation results show that impatience does not affect
the multicast capacity significantly. For an impatient JLC
network with patienceα = 0.5, d = 10, Fig. 5 shows
that as the ratio of source outdegree to sink indegreek/d
increases, the multicast capacity gradually approaches its
upper limit, regardless of the impatient behavior of nodes.
Specifically, whenk/d = 15, the loss of multicast capacity
in broadcast mode is less than 5%, and whenk/d ≥ 30,
there is essentially no loss of capacity.

Fig. 6 shows the change of multicast capacity of an
impatient JLC network asα changes. Naturally, the smaller
the α, the less multicast capacity the network has, but only
when α ≤ 0.2 does the multicast capacity suffer severely.
Therefore, we can chooseα ≥ 0.3 to achieve shorter trans-
mission delay, without sacrificing much multicast capacity.

B. Complete Graph with Random Edge Capacities

It is also of interest to consider the class of complete
graphs with random edge capacities. We use the following
construction: in a complete graph with bidirectional edges,
we randomly select a source node and, for each edge,
we assign its capacity according to a certain probability
distribution. Specifically, we used Bernoulli and geometric
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distributions in our simulation studies. Note that an edge
with capacityc > 1 can be modeled asc multiple parallel
edges, each with capacity 1.

When the network has Bernoulli distributed edge capaci-
ties with parameterp, Fig. 7 shows that the multicast capacity
of a network under broadcast constraint is essentially the
same as that of its unconstrained counterpart.

For a network where each edge has a geometric distributed
capacity c, with Pr[c = i] = (1 − p)pi, i = 0, 1, . . .,
the performance gap between the unconstrained and the
broadcast constrained cases increases withp, as shown in
Fig. 8. The reason is that the broadcast transformation
effectively limits the outgoing edge capacity of a node to
1, so an increase in the incoming edge capacity does not
improve the multicast capacity. By contrast, the multicast
capacity in the unconstrained case increases rapidly because
both incoming and outgoing edge capacities increase asp
increases.

Unlike the JLC networks, it is not clear that this class of
complete graphs with random edge capacities corresponds to
any realistic networks.

VI. CONCLUSIONS

We have introduced the broadcast-mode transformation of
a network, which restricts the influence of potential adver-
saries by limiting them to a single transmission opportunity
per generation. In some networks, for example the JLC
networks, with a sufficient diversity of internally-disjoint
paths from source to sink(s), the multicast capacity may not
be greatly affected by this transformation. Combined with
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error-control coding, this approach may be an effective
means of dealing with adversaries, particularly in application
scenarios such as real-time media streaming, where alterna-
tive (e.g., cryptographic) methods may be cost-prohibitive.
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