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Motivation

•Communication: synchronization and coding
•Synchronization: mostly done by training:

xc xc . . . xc capacity achieving code
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Is that always good? Can we do better?

Distinguishing Codes from Noise

Asynchronous channel
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• ?: input symbol to model that nothing
is sent.
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Slotted simplification
Communicate in pre-defined timeslots:

t

?n ?n ?n c(i) ?n ?n c(j) ?n

detect & locate slotting−→ detection only

Mathematical Setup

For a channel code C = {Xn(k)} with rate R, we have the
following hypothesis testing problem:H0 : Yi

i.i.d.∼ W (·|?) i = 1, 2, · · · n
H1 : Yn ∼W (·|Xn(k)) k ∈ {1, 2, · · · , M}

Define
Pm , P [{H1→ H0}]

.
= exp (−nEm)

Pf , P [{H0→ H1}]
.
= exp (−nEf)

Analysis objectives
Characterize the Em− Ef trade-off at rate R.

Special case: Em = 0

Optimal Ef(R) when Em = 0
Given Em = 0 and hence Pm→ 0,

Ef(R) = max
PX:I(PX,W)=R

D (PY‖Q?)

• i.i.d. codebook with distribution PX
• noise output distribution Q? = W (·|?).
X use rate-achieving i.i.d. codebook rather than

capacity-achiving codebook.
BSC Example

For a binary symmetric channel
(BSC) with W (·|?) = Bern (u)
(u ≤ 0.5), we can achieve
Ef(R) = D( Bern (s∗)︸ ︷︷ ︸

c.w. output dist.
‖ Bern (u)︸ ︷︷ ︸
noise output dist.

)

where Hb (s∗)− Hb (ε) = R.
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Figure: Ef(R) for BSC with ε = 0.01

Comparison with training
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Figure: Comparison with training for BSC with ε = 0.01.

XLarge gain over training at high rate.

General case: Em ≥ 0

Achievable Ef(R) when Em ≥ 0

Given Pm
.
≤ exp(−nEm),

Ef(R, Em) = max
PX:I(PX,W)≥R

min
V:D(V‖W|PX)≤Em[

D (QV‖Q?) + {I (PX, V)− R}+
]

• achieved by constant composition codebook with
maximizing distribution P∗X.

• i.i.d. codebook is suboptimal in general.
• non-trivial converse for DMC is unknown.

Comparison with i.i.d. codebook and
training for BSC channel
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(a)R = 0.405
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Figure: Performance comparison between constant composition
codebook, i.i.d. codebook, and training for BSC with ε = 0.05 and
u = 0.5.

XAgain, large gain over training at high rate.

Extensions & Connections

AWGN channel, unequal error protection (UEP), . . .

Conclusion
For certain communication scenarios, designing codes for
both detection and information transmission jointly
achieves significantly larger detection error exponents than
the traditional separate sync–coding approach.


