Distinguishing Codes from Noise

Motivation

- Communication: synchronization and coding
- Synchronization: mostly done by training:

Is that always good? Can we do better?

Distinguishing Codes from Noise

Asynchronous channel

• *: input symbol to model that nothing is sent.

> codeword 2 codeword 1 $\star \cdots \star C_1 \cdots C_n \star \star C_1 \cdots C_n \star$ X_{t_1} X_{t_2} X_1

Slotted simplification

Communicate in pre-defined timeslots:

 $\star^{n} \star^{n} \star^{n} \mathbf{c}(i) \star^{n} \mathbf{c}(j) \star^{n}$

detect & locate $\xrightarrow{\text{slotting}}$ detection only

Mathematical Setup

For a channel code $\mathcal{C} = \{X^n(k)\}$ with rate R, we have the following hypothesis testing problem:

 $H_0: Y_i \stackrel{i.i.d.}{\sim} W(\cdot|\star) \quad i=1,2,\cdots n$ $H_1: Y^n \sim W(\cdot | X^n(k)) \ k \in \{1, 2, \cdots, M\}$ Define $P_{\rm m} \triangleq \mathbb{P}\left[\{H_1 \to H_0\}\right] \doteq \exp\left(-nE_{\rm m}\right)$ $P_{\rm f} \triangleq \mathbb{P}\left[\{H_0 \to H_1\}\right] \doteq \exp\left(-nE_{\rm f}\right)$ Analysis objectives Characterize the $E_{\rm m} - E_{\rm f}$ trade-off at rate R.

Optimal $E_{f}(R)$ when $E_{m} = 0$

- Given $E_{\rm m} = 0$ and hence $P_{\rm m} \rightarrow 0$, $E_{\mathbf{f}}(R) = \max_{P_X: I(P_X, W) = R} D\left(P_Y \| Q_\star\right)$
- i.i.d. codebook with distribution P_X
- noise output distribution $Q_{\star} = W(\cdot | \star)$.
- use rate-achieving i.i.d. codebook rather than capacity-achiving codebook.

BSC Example

General case: $E_{\rm m} \ge 0$

Achievable $E_f(R)$ when $E_m \ge 0$

Given
$$P_{\mathrm{m}} \leq \exp(-nE_{\mathrm{m}})$$
,
 $E_{\mathrm{f}}(R, E_{\mathrm{m}}) = \max_{\substack{P_X: I(P_X, W) \geq R \ V: D(V ||W|P_X) \leq E_{\mathrm{m}}}} \min_{\substack{P_X: I(P_X, W) \geq R \ V: D(V ||W|P_X) \leq E_{\mathrm{m}}}} \int D(Q_V ||Q_*) + \{I(P_X, V) - V\}$

- achieved by constant composition codebook with maximizing distribution P_X^* .
- i.i.d. codebook is suboptimal in general.
- non-trivial converse for DMC is unknown.

Comparison with i.i.d. codebook and training for BSC channel

Figure: Performance comparison between constant composition codebook, i.i.d. codebook, and training for BSC with $\varepsilon = 0.05$ and u = 0.5.

✓ Again, large gain over training at high rate.

Extensions & Connections

AWGN channel, unequal error protection (UEP), ...

Conclusion

For certain communication scenarios, designing codes for both detection and information transmission jointly achieves significantly larger detection error exponents than the traditional separate sync-coding approach.

Massachusetts

