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Neurons
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Neural Spike Train

Neural spike pulse shape:
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time of arrival (TOA) conventions:

¢ several options

¢ needs to use one consistently
asynchronous operations among
a(j):

¢ no links among spike

production time from different
neurons

= when n > 2, possible for two
spikes to be arbitrary close

e when n = 1, need to wait the
refractory period A
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Neural Spike Train

time of arrival (TOA) conventions:

Union of spikes from three e several options

neurons: ¢ needs to use one consistently
o7 asynchronous operations among
" a(j):

¢ no links among spike
production time from different
neurons

= when n > 2, possible for two
“HILHELL I spikes to be arbitrary close

‘ e when n = 1, need to wait the
refractory period A
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Afferent Spike Train Process

IP[i produces a spike in (t,t + dt)]

dt]o dt
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Spike train process (cont.)

¢ spikes « inter-spike

interval (ISI)
_ 05 ‘ ‘ ‘ ‘ ‘ ‘
e A(t): instantaneous 0 2 4 s 8 10 12 14
random mean 25 : : : : :
g lized A(t
spiking frequency S

(unit: spikes/second)

e D(t): instantaneous  '°|
random mean i
excitatory afferent
ISI duration (unit:
time unit)
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Why D(t)?

Introducing D(t) allows us to conceptualize the neuron as a
communication channel:

e input (excitations): has unit of time
e output (firing): has unit of time. [coming soon]

e stochastically converts input time signals to output time
signals

Statistics of D(t)

* pp(7): correlation of D(t) « stationary assumption
modeling of wireless
pp(7p) =1/2 channel

o Tp>A
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Channel Model: input

—»t channel ——>
D(t) ?7??

What is the output?
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Efferent Spike Train Process

) ) efferent
o Efferent spike: action cohort
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Channel Model: input & output

—>t channel |—>
D(t) {T%}

¢ both input & output have units of time

¢ but different indexing!
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The Mean Value Assumption

1 O

Dy = D(u) du
Ti = A Js, y4n -
Construct a piecewise constant
k=4 random process D(t), where
D(t) b(t) =D for Sp_1+A <t < S,
A Dy
OI Ss3 I T I

| Sy |
Mean Value Assumption
{[)(t)} adequately represents D(t) for the purpose of analysis.
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Feedback among neurons

For neuron j, its excitations come

from: D1 I
o top-down feedback from higher /
levels of the cortex D, Ty
e horizontal feedback from the
same neuron region
D3 T

¢ bottom-up signals from lower
levels of the cortex

= causal feedback

=
T L (Dy,...,Dn_1)|Dn

T L (T1,...,Tu1)|Dy
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Channel Model: integer-indexed input & output

—>1 channel —>
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Channel Model: integer-indexed input & output

—>1 channel —>

1Dk} Tk}

Any model for the channel?

Information Theory and Neuroscience I



Classical Integrate and Fire (CIF) Neuron

CIF neuron:
e excitatory synapses have the
same weight w. m afferent spikes
¢ unit step response to each ' ' '
afferent spike 0 -

efferent

¢ fixed threshold

PSP L Lo
threshold : : 1

n € ((m— 1w, mw] ~
. : trigger
Always need m spikes to fire » AP
Input-output relationship
T, =A+ml 0 t integrate fire t

refractory

E[I] = dy
dy, ~ Dy
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CIF Neuron: Energy Constraints

Energy that j expands during an ISI:

¢ metabolic energy:

e1 =CiT e T is the random
duration of the ISI
e energy to construct PSP during

AT
(A,T] o = CoM e M is the random

« enerav to aenerate AP number of afferent
gytog ' spikes in (A, T]
ez = C3
e For CIF model, we have M = m
always, hence
GC[F(T) =Cy+CiT o (g =Com+ Cs.
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Problem Formulation

Channel model:

e Input: {Dy}
e Output: {T}} — 51 CIF .
o memoryless and {D;} | heuron |
time-invariant channel memoryless
¢ but with (lots of) causal
feedback!

Central tenet
Te optimality criterion apropos of neuronal information
transmission is the maximization of bits per joule (bpj).

Main objective

Determines the optimal input & output distributions fp(-) and
fr(-) based on the above principle.
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Information Rate

We start by investigating the information rate 1(D; T).
However, as {D;} may not be

D £ (Dy,Ds, -+, Dy) independent,
T2 (T, Ty, ,Ty) .
I(D;T) <> I(D;Ty)

Memoryless = —
=1

Equality only when {D;}
frp(tld) = HfT|D (tilds) independent. Are they?
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Implications of

Recall
™ > A

For two jointly Gaussian r.v.,
When T}, slightly larger than A 1 )
= Dy.1 and Dy, highly Tiintly Gaussian = D) log(1 — p7)

correlated

. where as 1.
= Ty41 and T}, similarly Toeasp

correlated Message: correlation between

= Tj+1 will be similarly small Dy, and Dy, results in a
penalty in information rate.
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Long Term Information Rate

Incremental conditional mutual information:

I = lim I,
n—oo
where
TL_I(Dla D1'L7T ‘Tlu"' TTZ 1)
= I(Dp; Ty|T1, . . ., Ty 1) + PP =)
= WTW|Ty, ..., Tpo1) — h(Tn|Dp, T1, . .., Trt)
= W(TH|T1, ..., Ta1) — h(T,|Dy)
=I(D,;T,) — I(Ty; Th, ..., Th-1)

Since {(Dx, Ty)} strictly stationary:

I = I(Dl;Tl) — [I(Tl,TQ) =+ nh—{go I(Tn, Tl, N ,Tn_2|Tn_1)}

information decrement
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Long Term Information Rate (cont.)

Long Term Information Rate

I =1(Dy; 1) — [I(Th,T3) + lim (T Ty, ..., Ty2|Th-1))

information decrement

lim I(Tn, Tl, e 7Tn_2‘Tn_1)
I(Ty,T5): principal information e
decrement negligible, as having 7;,—1 is

almost as effective as having

Dy_1.
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Information Decrement [(7};75)

I(Ty; T»)
=P [Ty > mp| I(T1; T5|Ty > 7p)

+P[Ty < 7p] I(Th; To|Ty < 7p) — when T} > 7p,
~P[Th < mp] I(Th; T2|Th < Tp) T, I T, effectively.

When Ty < 2A <« mp,

o1, =~ pp(Th) — high correlation
I(T1; Ty) ~ —kE [log T1] + C «— via analyzing the
conditional variance
where « and C are constants based of .
on pp(7).
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Recap

Model channel input and output as time signals
Mean value assumption: simplify analysis

Memoryless channel with causal feedback
CIF neuron model
e energy

eC[F(T) =Cy+ CiT

Information rate analysis

e coherence time
e information decrement
¢ information rate

I = I(Dl,Tl) —I(Tl,TQ)

Lots of “hand-waving” in modeling. . .
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