
Dominant resource fairness:
Fair allocation of heterogeneous resources

in datacenters

Ali Ghodsi, Matei Zaharia, Benjamin Hindman,
Andy Konwinski, Scott Shenker, Ion Stoica

University of California, Berkeley

Presenter: Da Wang
6.897 Cloud Computing Seminar, EECS, MIT

April 1, 2011



Overview

Motivation
Multiple resources
Heterogeneous task demands

Fairness
Sharing incentive
Strategy-proofness
Envy-freeness
Pareto-efficiency
More . . .

Dominant Resource Fairness
Algorithm
Properties

Alternatives
Asset
CEEI



Motivation

Heterogeneity in data centers:
Resources
User demand

Existing schedulers:
Quincy
Hadoop Fair Scheduler

Ignores the user demand
heterogeneity, causing

Mismatch
Inefficiency

CPU and Memory demands in the
Facebook data center



Resource Scheduling Problem

System model
n users u1, u2, · · · , un

m resources R1, R2, · · · , Rm

demands matrix [Dij ]n×m
I Each user has demand vector Di

allocation A = [a1, a2, · · · , an]

uA, uB

R1 = 9 CPUs
R2 = 18 GB Memory
DA = [1, 4], DB = [3, 1]

A = [3, 2]

Simplifications
infinite task demand
divisible resources
homogeneous tasks for each user



Allocation Properties
Sharing incentive

Each user should be better off sharing the cluster,
than exclusively using her own partition of the cluster.

DA = [1, 4]
DB = [3, 1]



Allocation Properties
Strategy-proofness

benefit: run more tasks
lying: fake the demand vector

Users should not be able to benefit
by lying about their resource demands.



Allocation Properties
Envy-freeness

The notion of “fairness” in economics
prefer: runs more task
⇒ Strictly more resource for each type

A user should not prefer
the allocation of another user.



Allocation Properties
Pareto efficiency

“Maximal” system utilization
Not difficult to achieve

It should not be possible to increase the allocation of a user
without decreasing the allocation of at least another user.



Allocation Properties
Additional ones

Single resource fairness
For a single resource, the solution should reduce to max-min fairness.

Maximize the minimum share of resources.
Infinite task demand⇒ equal division among users.



Allocation Properties
Additional ones

Single resource fairness

Bottleneck fairness
For bottleneck resource, the solution should reduce to max-min fair-
ness for that resource.

Bottleneck: everyone wants the resource the most!



Allocation Properties
Additional ones

Single resource fairness

Bottleneck fairness

Population monotonicity
When a user leaves the system, none of the allocation of the remain-
ing users should decrease.



Allocation Properties
Additional ones

Single resource fairness

Bottleneck fairness

Population monotonicity

Resource monotonicity
When more resources are added to the system, none of the allocation
of existing users should decrease.



Allocation Properties
Additional ones

Single resource fairness

Bottleneck fairness

Population monotonicity

Resource monotonicity X
X



Dominant Resource Fairness (DRF)

Dominant Resource
Each user receives a share of
the system resources
The maximum among all
shares of a user: dominant
share
Resource corresponding to the
dominant share: dominant
resource

Example
System: 9 CPUs, 12GB RAM
Task demand: [3 CPUs, 1GB]
Dominant resource: CPU

The number of tasks one can run is limited by the dominant resource.



Dominant Resource Fairness (DRF)

Dominant Resource
Each user receives a share of
the system resources
The maximum among all
shares of a user: dominant
share
Resource corresponding to the
dominant share: dominant
resource

Dominant Resource Fairness
Maximize the smallest
dominant share in the system
Achieve all four main fairness
properties

Example
System: 9 CPUs, 12GB RAM
Task demand: [3 CPUs, 1GB]
Dominant resource: CPU

The number of tasks one can run is limited by the dominant resource.



Dominant Resource Fairness
Algorithm

Greedy algorithm
Repeatedly allocation one task to the user

with the minimum dominant share
and when there are enough resources to allocate another
task

System: 9 CPUs, 18GB RAM
DA = [1, 4], DB = [3, 1]

A = [3, 2]



Dominant Resource Fairness
Algorithm

Greedy algorithm
Repeatedly allocation one task to the user

with the minimum dominant share
and when there are enough resources to allocate another
task

System: 9 CPUs, 18GB RAM
DA = [1, 4], DB = [3, 1]

A = [3, 2]



Dominant Resource Fairness
Algorithm

Progressive filling
When resources can be allocated in arbitrary small amounts,

increase all users’ dominant shares at the same rate
increase other resources shares proportionally
until at least one resource is saturated

System: 9 CPUs, 18GB RAM
DA = [1, 4], DB = [3, 1]

A = [3, 2]



Dominant Resource Fairness
Properties

Sharing incentives Can be proven based on its alloca-
tion algorithm.
Each user gets at least 1/n dominant
resources.



Dominant Resource Fairness
Properties

X Sharing incentives
Strategy-proofness

Lying about
dominant resource demand
v.s. other demands.



Dominant Resource Fairness
Properties

X Sharing incentives
X Strategy-proofness

Envy-freeness

No user can get more dominant re-
source than other users.



Dominant Resource Fairness
Properties

X Sharing incentives
X Strategy-proofness
X Envy-freeness

Pareto efficiency

Resources utilization cannot be in-
creased.



Dominant Resource Fairness
Properties

X Sharing incentives
X Strategy-proofness
X Envy-freeness
X Pareto efficiency

Population Monotonicity

Given strictly positive demand vec-
tors, population monotonicity is sat-
isfied. Otherwise, it may be violated.

D1 = [2, 0], D2 = [1, 2], D3 = [0, 2]

24 units of each resource
Then 3rd user leaves.
Allocation: [9, 6, 6]⇒ [8, 8]



Dominant Resource Fairness
Properties

X Sharing incentives
X Strategy-proofness
X Envy-freeness
X Pareto efficiency
X Population Monotonicity

Resource Monotonicity

DRF does not satisfies resource
monotonicity.

D1 = [2, 1], D2 = [1, 2]

Initially: 12 units of each resource
Then first resource increase to 24
Allocation: [4, 4]⇒ [6, 3]



Dominant Resource Fairness
Properties

X Sharing incentives
X Strategy-proofness
X Envy-freeness
X Pareto efficiency
X Population Monotonicity
7 Resource Monotonicity



Dominant Resource Fairness
Weighted case

Weights Wij : the weight of user i for resource j

Weighted dominant share:

max
j

user i′s share of resource j

Wij

Algorithm essentially the same.

Models User priority over resources
User tasks with different demand vectors



Alternative Allocation Policies
Asset Fairness

Idea Equal shares of differenct resources are worth the same.

Aim To equalize the aggregate share allocated to each user.

Example
R1 = 9 CPUs
R2 = 18 GB Memory
D1 = [1, 4],
D2 = [3, 1]

A = [2.52, 2.16]



Alternative Allocation Policies
Asset Fairness

Idea Equal shares of differenct resources are worth the same.

Aim To equalize the aggregate share allocated to each user.

Weakness Fail to meet the sharing incentive property.

Example
R1 = 30 CPUs
R2 = 30 GB Memory
D1 = [1, 3],
D2 = [1, 1]

A = [6, 12]



Alternative Allocation Policies
Competitive Equilibrium from Equal Incomes

Idea Allocate resources in a perfectly competitive market.

Aim To maximize user utility (e.g., dominant share)

Weakness Fail to meet the strategy-proofness property
Fail to meet the population monotonicity property



Allocation Policies
Comparisons

Property Asset CEEI DRF
Sharing incentives X X
Strategy-proofness X X
Envy-freeness X X X
Pareto efficiency X X X

Single Resource Fairness X X X
Bottleneck Fairness X X
Population Monotonicity X X
Resource Monotonicity



Allocation Policies
Tradeoffs

Inevitable trade-off between
resource monotonicity
sharing incentive
Pareto efficiency

No allocation policy can satisfy
all three properties at the same
time!



Allocation Policies
Tradeoffs

Inevitable trade-off between
resource monotonicity
sharing incentive
Pareto efficiency

No allocation policy can satisfy
all three properties at the same
time!

Proof by example:
Two users A and B
Two resources with
equal amount
A demand: [2,1]
B demand: [1,2]



Allocation Policies
Tradeoffs

Inevitable trade-off between
resource monotonicity
sharing incentive
Pareto efficiency

No allocation policy can satisfy
all three properties at the same
time!

Proof by example:
Two users A and B
Two resources with
equal amount
A demand: [2,1]
B demand: [1,2]

Sharing incentive
A gets at least 1/2 of resource 1
B gets at least 1/2 of resource 2

Pareto efficiency
⇒ at least one of two users hold more
than half of a resource
WLOG, assume it is A holding more
than half of resource 1.



Allocation Policies
Tradeoffs

Inevitable trade-off between
resource monotonicity
sharing incentive
Pareto efficiency

No allocation policy can satisfy
all three properties at the same
time!

Proof by example:
Two users A and B
Two resources with
equal amount
A demand: [2,1]
B demand: [1,2]

Sharing incentive
A gets at least 1/2 of resource 1
B gets at least 1/2 of resource 2

Pareto efficiency
⇒ at least one of two users hold more
than half of a resource
WLOG, assume it is A holding more
than half of resource 1.

Quadruple resource 2
⇒ User B now has less than 1/2 of
resource 2



Allocation Policies
Tradeoffs

Inevitable trade-off between
resource monotonicity
sharing incentive
Pareto efficiency

No allocation policy can satisfy
all three properties at the same
time!

Proof by example:
Two users A and B
Two resources with
equal amount
A demand: [2,1]
B demand: [1,2]

Sharing incentive
A gets at least 1/2 of resource 1
B gets at least 1/2 of resource 2

Pareto efficiency
⇒ at least one of two users hold more
than half of a resource
WLOG, assume it is A holding more
than half of resource 1.

Quadruple resource 2
⇒ User B now has less than 1/2 of
resource 2

Sharing incentive
⇒ Give both user 1/2 of resource 1
⇒ A lost some resource 1!



Practical Issues
Indivisible Tasks & Resources

Continuous scenario
Resources can be allocated in
arbitrarily small amounts.
Often not the case in practice

Discrete scenario
Resources are allocated to
tasks in discrete amounts
Cluster: often consists of many
small machines.

Relationships
In the discrete scenario, it is possible to allocate
resources such that

the difference between the allocation for any
two users is bounded

compared to the continuous scenario.



Performance
Resource share over time

Resource:
[CPU = 4, RAM = 15GB]

Time Job 1 Job 2
1—120 [1, 10] [1,1]

121—240 [2, 4] [1,3]
241—360 [1,7] [1,4]

Comments
Adaptive to task demand
change
Sharing incentive
Resource fragmentation in the
3rd period



Performance
Large v.s. small jobs

DRF Comparison
Slot-level fair sharing: Hadoop Fair Scheduler & Quincy
CPU-only fair sharing: single-resource scheduling

Large jobs: # completion Large jobs: response time

Small jobs: # completion Small jobs: response time



Performance
Data from Facebook cluster

Time reduction

Small jobs are hard to improve
(single phase execution)
Large reduction on long jobs
(multiple phase execution)

Utilization

Higher utilization by adapting
resource allocation with task
demands



Comments

Insight
Number of tasks that can be run is determined by the
dominant resource.

Is this always the case?
The definitions of both strategy-proofness and
envyness are based on this

Thoughts
Smoother trade-off between fairness properties?

I Mixing different allocation strategies for better
trade-offs (currently either have or do not have)

Use the statistical properties the jobs to further
optimize the efficiency

I a probabilistic system model



Summary

Main contributions
Use dominant share as a proxy for utility

I The number of tasks is limited by the amount of
dominant resource.

Propose fairness properties and show that DRF
satisfies most of them

Future work
Minimize resource fragmentation (bin packing) under
fairness constraints
Allocation under placement constraints
Use DRF as operating system scheduler for
multicore systems


